Red to blue tunable upconversion in Tm3+-doped ZrO2 nanocrystals.
نویسندگان
چکیده
The effect of dopant concentration on the blue upconversion (UPC) emission of Tm(3+) -doped ZrO(2) nanocrystals under different excitation wavelengths in the red region is reported. The UPC emissions are due to the f-f electronic transitions from excited states (1)G(4) and (1)D(2) of Tm(3+). We observed a chromatic change in the UPC with tuning the excitation wavelength. The UPC emission bands at 475, 488, and 501 nm are observed under excitation at 649 nm, but bands centered at 454 and 460 nm are observed when the excitation wavelength is tuned to 655 nm. The UPC emission could be tuned from 501 to 454 nm ( approximately 47 nm) by changing the excitation wavelength from 649 to 655 nm ( approximately 6 nm). The pump power dependence of the emission bands at 475, 488, and 501 nm were investigated on excitation intensity at 649 nm, and the emission bands at 454 and 460 nm are investigated on excitation intensity at 655 nm, which confirms that all of these UPC emission lines are a two-photon absorption process.
منابع مشابه
Fine-tuning of multiple upconversion emissions by controlling the crystal phase and morphology between GdF3:Yb3+,Tm3+ and GdOF:Yb3+,Tm3+ nanocrystals
Fine-tuning of multi-color emission characteristics of upconversion lanthanide-ion-doped nanocrystals is of high importance for 3-D color displays, multi-color bio-imaging, and multiplexed cellular labeling. Here, we report a strategy enabling crystal phase transition and morphology transformation between GdF3:Yb ,Tm and GdOF:Yb,Tm nanocrystals for fine-tuning of upconversion multi-color emissi...
متن کاملBlue upconversion emission of Tm–Yb in ZrO2 nanocrystals: Role of Yb ions
The effect of Yb ions on the blue upconversion (UPC) emission of Yb–Tm co-doped ZrO2 nanocrystals is reported. The blue (490 nm) UPC emission is due to G4– H6 transition of Tm 3+ and the pump power dependence of this UPC emission band are cubic indicating that three excitation photons are involved in the UPC process. An additional UPC emission band at 505 nm is observed when the Yb concentratio...
متن کاملA spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals.
The spectroscopic behavior of gadolinium gallium garnet (Gd3Ga5O12, GGG) nanocrystals codoped with 1% each of Tm3+ and Yb3+ prepared via a solution combustion synthesis procedure was investigated. Initial excitation of the codoped nanocrystals with 465.8 nm (into the 1G4 state) showed a dominant blue-green emission ascribed to the 1G4-3H6 transition as well as red and NIR emissions from the 1G4...
متن کاملConfining Excitation Energy in Er3+ -Sensitized Upconversion Nanocrystals through Tm3+ -Mediated Transient Energy Trapping.
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion ...
متن کاملMagnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.
Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 20 شماره
صفحات -
تاریخ انتشار 2005